Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY

LABORATORY PLAN

Academic Year 2019-20

Program:	B E – Civil Engineering		
Semester :	4		
Course Code:	18CVL48		
Course Title:	Fluid Mechanics and Hydraulics Machinery Lab		
Credit / L-T-P:	2 / 0-0-3		
Total Contact Hours:	42		
Course Plan Author:	Priyankashri K N		

Academic Evaluation and Monitoring Cell

#29 HESARAGATTA MAIN ROAD, CHIMNEY HILLS CHIKKABANAVARA POST BANGALORE-560090 Phone -080-23721477/28392221 <u>WWW.skit.org</u>, EMAIL:Skitprinci1@gmail.com

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	4
3. Laboratory Material	
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	
B. Laboratory Instructions	
1. General Instructions	
2. Laboratory Specific Instructions	
C. OBE PARAMETERS	7
1. Laboratory Outcomes	
2. Laboratory Applications	
3. Mapping And Justification	
4. Articulation Matrix	•
5. Curricular Gap and Experiments	
6. Experiments Beyond Syllabus	
D. COURSE ASSESSMENT	
1. Laboratory Coverage	
2. Continuous Internal Assessment (CIA)	
E. EXPERIMENTS	
Experiment 01: CALIBRATION OF COLLECTING TANK (GRAVIMETRIC MI	
Experiment o2 : CALIBRATION OF PRESSURE GAUGE (DEAD WEIGHT M	
Experiment og :VERIFICATION OF BERNOULLI'S EQUATION	
Experiment 04 :CALIBERATION OF VENTURIMETER AND ORIFICEMETER Experiment 05: CALIBERATION OF ORIFICEMETER	۲15 17
Experiment 06 : DETERMINATION OF PIPE FLOW LOSSES IN CIRCULAR	DIDES 18
Experiment 07:FLOW THROUGH NOTCHES	20
Experiment o8: IMPACT OF JET ON PLATES	23
Experiment 09: Pelton Wheel turbine	
F. Content to Experiment Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.Tech	Program:	CV
Year / Semester :	2/4	Academic Year:	2019-20
Course Title:	Fluid mechanics and Hydraulics Machinery lab	, Course Code:	18CVL48
Credit / L-T-P:	2 / 0-0-3	SEE Duration:	180 Minutes
Total Contact Hours:	42 Hrs	SEE Marks:	100 Marks
CIA Marks:	40 Marks	Assignment	5/1 Experiment
Lab. Plan Author	Priyankashri K N	Sign	Dt : 03/08/18
Checked By:	Shivaprasad D G	Sign	Dt :

2. Laboratory Content

		1		
Expt.	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Verification of Bernoulli's equation	03	Bernoullis	L4
			theorem	analyse
2	Determination of Cd for Venturimeter and Orifice meter	03	Venturimete	L4
			r,orificemete	analyse
			r	
3	Calibration of Rectangular and Triangular notch	03	Rectangular	L4
			triangualr	analyse
			Notch	
4	Calibration of Ogee and Broad crested weir	03	Ogee, Broad	L4
			crested Wier	analyse
5	Determination of Cd for Venturiflume	03	venturiflume	L4
				analyse
	Experimental determination of force exerted by a jet on flat and	03	Flat vanes	L4
	curved plates (Hemispherical Vane).		and curved	analyse
			plates vanes	
	Experimental determination of operating characteristics of Pelton	03	Pelton	L4
	turbine		turbine	analyse
			efficiency	
8	Determination of efficiency of Francis turbine	03	Francis	L4
			turbine	analyse
			efficiency	
9	Determination of efficiency of Kaplan turbine	03	Kaplan	L4
			turbine	analyse
			efficiency	
10	Determination of efficiency of centrifugal pump	03	Centrifugal	L4
			pump	analyse
<u> </u>			efficiency	
11	Determination of Major and Minor Losses in Pipes	03	Losses in	L4
			pipes	analyse

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	Mohd. Kaleem Khan, "Fluid Mechanics and Machinery", Oxford University		In Lib / In Dept
4, 5	Press		
	"Standard methods for the examination of water and wastewater" 1995,		
	ALPHA, AWWA, WPCF Publication		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	Mohd. Kaleem Khan, "Fluid Mechanics and Machinery", Oxford University		In Dept

	Press		
	Text booksHydraulics and Fluid Mechanics' – Dr. P.N. Modi & D r S.M.		
	Seth, Standard Book House- New Delhi. 2009 Edition		
	Sarbjit Singh ,Experiments in Fluid Mechanics- PHI Pvt. Ltd New Delhi		
С	Concept Videos or Simulation for Understanding	-	-
C1	http://youtu.be/Ptf8icUjT1U (Bernollis theorem)		
C2	http://youtu.be/olNBqDpvSlc (venturimeter)		
с3	http://youtu.be/qbyL6q7_4 (Pelton turbine)		
C4	http://youtu.be/3BCiFeykRzo (Francis turbine)		
с5	http://youtu.be/DmJCDOTIDRY (Centrifugal pump)		
E	Recent Developments for Research	-	-
		?	In lib
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

2	Slude	students must have team the following Courses / Topics with described Content							
	Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms		
		Code					Level		
	1	18CV33	Fluid	Basic knowledge of pipe flow and	3		Understa		
			Mechanics-1	Bernoulli's Equation			nd L2		

Students must have learnt the following Courses / Topics with described Content .

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms Level
	Bernollis theorem/knowledge of pressure energy, kinetic energy ,potential energy	Higher Education/ GATE	Gap A seminar on Bernollis theorem	L4 analyse
	Venturimeter,orificemeter/knowledge pressure difference		A seminar on pipe flow	L4 analyse
	Notches / knowledge pressure difference	Higher Education/ GATE	A seminar on discharge through channels	L4 analyse
4	Turbines /knowledge power generation		A seminar on different types of turbines and principles of flow	L4 analyse
	pumpes /knowledge pressure difference	0	A seminar on lifting of water from lower to higher elevation	L4 analyse

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
	Students should report to the concerned lab as per the time table.	
	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
	Should attempt all problems / assignments given in the list session wise.	
7	When the experiment is completed, should return all the components/instruments taken for the purpose.	
	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	
10	Be careful while using chemicals acids and glassware	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
	Before conducting any test, students shall come prepared with theoretical background of the corresponding test (indicated under the section 'theory' in each test).	
	Students shall make sure to have the knowledge of using weighing balance ,oven.	
	Students shall give importance to accuracy and precision while conducting the test and interpreting the results	
	Students shall acquaint themselves with the safe and correct usage of instruments / equipment's under the guidance of teaching / supporting staff of the laboratory	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
LAPt.			Hours	Concept	Method		Level
-	_	At the end of the experiment, the student should be able to	-	-	-	_	-
1	18CVL48.1	Applying Bernoullis theorem for steady flow through pipes		Bernoulli's equation	Lecture and demons tration	C.IA	L4 Analyse
2	18CVL48.2	Analyze the flow through rectangular and Venturimeter and Orifice meter		Flow through Venturimete r and Orifice meter	and demons	C.IA	L4 Analyse
3		Analyze the flow through Rectangular and V-notch		Flow through Rectangular and V notch	and demons	C.IA	L4 Analyse
4	18CVL48.4	Examine the flow through Ogee and Broad crested weir and			Lecture and	C.IA	L4 Analyse

-		Total	16	-	-	-	-
					tration		
10	100 V L48.10	Understand the concept of pipe flow losses	02	Losses in pipes	Lecture and demons	U.IA	L4 Analyse
9		Examine the efficiency of centrifugal and reciprocating pumps	02	Pump efficiency	and demons tration	C.IA C.IA	L4 Analyse
8	18CVL48.8	Examine the operating characteristics of Francis turbine	02	Francis Turbines efficiency	Lecture and demons tration	C.IA	L4 Analyse
7		Examine the operating charecteristics of pelton wheel turbine	02	pelton Turbines efficiency	Lecture and demons tration	C.IA	L4 Analyse
6	18CVL48.6	Examine the operating charecteristics of kaplan, turbine	02	kaplan Turbines efficiency	Lecture and demons tration		L4 Analyse
5	18CVL48.5	Understand the Impact of jet on Flat and curved vanes	02	Impact of jet on Flat and curved vanes	and demons tration	C.IA	L4 Analyse
		venturiplume		Ogee and Broad crested weir and venturiplum e	demons tration		

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	To apply Bernoullis theorem flow through pipes	CO1	L3
2	Measure discharge through Venturimeter, orificemeter for pipes	CO2	L3
3	Measure discharge through Rectangular triangualr Notch for open channels	CO3	L3
4	Measure discharge through Ogee, Broad crested Wier for open channels	CO4	L3
5	Measure discharge through venturiflume for open channels	CO5	L3
6	Force exerted through Flat vanes and curved plates vanes	CO6	L3
7	To know characteristics of Pelton turbine and to measure efficiency	CO7	L3
8	To know characteristics of Francis turbine To know characteristics of	CO8	L3
9	To know characteristics of Kaplan turbine efficiency To know characteristics of	CO9	L3
10	To measure Centrifugal pump efficiency	CO10	L3

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	t Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev					
1.1			Level		el					
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-					
1	CO1	PO1	MEDIUM	The students will be able to apply the knowledge of mathematics,	L4					
				science, engineering fundamentals inferring the quality of water						
1	CO1	PO2	HIGH	The students will be able to apply the knowledge of mathematics,	L4					

				science, engineering fundamentals for dissolved oxygen content in water	
2	CO2	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for finding out chemical parameters like pH, acidity, alkalinity	L4
2	CO2	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse pH, acidity, alkalinity using Indian standard methods in reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	L4
2	CO2	PO3	MEDIUM	The students will be able to design solutions for making the pH, acidity, alkalinity within the standard levels	L4
3	CO3	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for finding out the physical characteristics viz. colour, turbidity, and conductivity of a given water sample	L4
3	CO3	PO2	HIGH	The students will be able to identify and examine physical characteristics viz. colour, turbidity, and conductivity of a given water sample using natural sciences, and engineering sciences	L4
4	CO4	PO2	HIGH	The students will be able to identify, formulate and review research literature for dissolved oxygen content in water reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	L4
4	CO4	PO4	HIGH	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of dissolved oxygen content	L4
5	CO5	PO2	HIGH	The students will be able to identify, formulate and review research literature for chloride content in water reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	L4
5	CO5	PO4	HIGH	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of chlorides content	L4
6	CO6	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to examine the chemical characteristics viz. chlorides, Iron, Available Chlorine and sulphates content to assess its suitability for drinking purposes.	L4
6	CO6	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse chemical characteristics viz. chlorides, Iron, Available Chlorine and sulphates content in samples	L4
7	CO7	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to find the optimum dosage of alum using Jar test	L4
7	CO7	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse the optimum dosage of alum using Jar test reaching substantiated conclusions natural sciences, and engineering sciences	L4
8	CO8	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to examine the chemical characteristics viz. chlorides, sodium potassium, Iron, nitrates, manganese content to assess its suitability for drinking purposes.	L4
8	CO8	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse chemical characteristics viz. sodium, potassium, Iron, nitrates, manganese content in samples	L4
9	CO9	PO1	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to understand the COD to assess its suitability for drinking purposes.	L4
10	CO10	PO1	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to understand the Air quality Monitoring and sound levels	L4

4. Articulation Matrix

CO – PO Mapping with	the state is the set of states and	fam a a ala co Do		and a second second second second
() = P() vianning with	manning level	for each (J)-P()	Dair With Course	average attainment
	independence to vot		puil, with course	average attainment.

		Experiment Outcomes Program Outcomes -																
	-	Experiment Outcomes													D 0	D O		-
Expt.	CO.#	At the end of the experiment				PO										PS	-	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	el
1	CO1	Applying Bernoullis theorem for	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	L4
		steady flow through pipes																
2	CO2	Analyze the flow through	3	2	1	-	-	-	-	-	-	-	-	-	-	-	-	L4
		rectangular and Venturimeter																
		and Orifice meter																
3	CO3	Analyze the flow through	3	2	3	-	-	-	-	-	-	-	-	-	-	-	-	L4
		Rectangular and V-notch																
4	CO4	Examine the flow through Ogee	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	L4
		and Broad crested weir and																
		venturiplume																
5	CO5	Understand the	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	L4
		Impact of jet on Flat and curved	-															
		vanes																
6	CO6	Examine the operating	3	2		-	-	-	-	-	-	-	-	-	-	-	-	L4
		charecteristics of kaplan, turbine	-															
7	CO7	Examine the operating	3	2		-	-	-	-	-	-	-	-	-	-	-	-	L4
		charecteristics of pelton wheel																
		turbine																
8	CO8	Examine the operating	3	2		-	-	-	-	-	-	-	-	-	-	-	-	L4
		characteristics of Francis	-															
		turbine																
9	COg	Examine the efficiency of	3	2		-	-	-	-	-	-	-	-	-	-	-	-	L4
Ŭ	Ū.	centrifugal and reciprocating	Ũ															•
		pumps																
10	CO10	Understand the concept of pipe	1	2		-	-	-	-	-	-	-	-	-	-	-	-	L4
		flow losses																
-			2.7	2.5	2.5	1.5	-	-	-	-	-	-	-	-	-	-	-	-
-	PO, PSO	1.Engineering Knowledge; 2.Prob						Des	ign	/	Dei	velc	pm	ent	of	S	blut	ions:
	.,	4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and																
		Society; 7.Environment and Su																ork;
		10.Communication; 11.Project N						nd		nan								ning;
			Communication; 11.Project Management and Finance; 12.Life-long Learning; Software Engineering; S2.Data Base Management; S3.Web Design															
		electre are Engineering, SElbara E				301		<i>., .</i> ,			- 00	.9.1						

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Student. I Assignment per chapter per student. I seminar per test per student. Unit Title Teachi No. of question in Exam									CO	Levels	
Onic	Title								OFF	CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Applying Bernoullis theorem for	03	-	-	-	-	-	-	1	CO1	L4
	steady flow through pipes										
2	Analyze the flow through	03	-	-	-	-	-	-	1	CO2	L4
	rectangular and Venturimeter and										
	Orifice meter										
3	Analyze the flow through	03	_	_	_	_	_	_	1	CO3	L4
	Rectangular and V-notch	00							-	005	
4	Examine the flow through Ogee	03	_				_		1	CO4	L4
4	and Broad crested weir and	03	_	_	_	_			1	004	∟4
<u> </u>	venturiplume									00-	
5	Understand the	03	-	-	-	-	-	-	1	CO5	L4
	Impact of jet on Flat and curved										
	vanes										
6	Examine the operating	03	-	-	-	-	-	-	1	CO6	L4
	charecteristics of kaplan, turbine										
7	Examine the operating	03	-	-	-	-	-	-	1	CO7	L4
	charecteristics of pelton wheel	_								-	-
	turbine										
	Examine the operating	03	_	_	_	_	-	_	1	CO8	L4
	characteristics of Francis turbine								-	200	
9	Examine the efficiency of	03	_	_	_	_	_	_	1	CO9	L4
9	centrifugal and reciprocating	03							_ _	209	∟4
	pumps	00								0010	
10	Understand the concept of pipe	03	-	-	-	-	-	-	1	CO10	L4
	flow losses										
-	Total	42	-	-	-	-	-	-	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	15	CO1, CO2, CO3,	L4
CIA Exam – 2	15	CO4, CO5, CO6,	L4
CIA Exam – 3	15	CO7, CO8,CO9,CO10	L4
Assignment - 1	05	CO1, CO2, CO3,	L4
Assignment - 2	05	CO4, CO5, CO6,	L4
Assignment - 3	05	CO7, CO8,CO9	L4
Seminar - 1	-		
Seminar - 2	-		
Seminar - 3	-		
Other Activities – define – Slip test		CO1 to Co10	L2, L3, L4
Final CIA Marks	20	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	20 Marks
4	Internal Assessment	40 Marks
5	SEE	80 Marks
-	Total	100 Marks

E. EXPERIMENTS

Experiment 01 : CALIBRATION OF COLLECTING TANK (GRAVIMETRIC METHOD)

-	Experiment No.:	1	Marks		Date Planned		Date Conducted			
1	Title	Collecti	ing tank	by Gravir	metric method					
2	Course Outcomes		<u> </u>		orem for steady					
-	Aim				ig tank by Gravin					
4	Material / Equipment Required		0		llecting tank, sur	· ·	•			
5	Principle, Concept	magnitı a secor	ude and nd device	another e. The de	rison between r measurement m evice with the kn e unit under test.	nade in as sim ow correctnes	ilar way as po	ssible with		
6	Procedure	•	Keep th	ne delive	ry valve closed a	nd check for e	electrical conr	nections.		
		•	Switch	on the el	ectronic weighin	ig scale and n	notor.			
		•	Note d	own the	dimension of me	easuring tank				
		•	Allow an initial discharge of water to measuring tank by regulating the valve.							
		•	Press the tare button to set zero in the weighing scale.							
		•	Allow discharge for know rise "R", (say 10cm) water to be collected in the collecting tank.							
		•	Note do	own the r	mass of the wate	er collected in	the measuring	g tank.		
		•	Tabula	te the rea	ading and repeat	the procedur	re for different	rise		
7	Diagram									
8	Observation Table, Look-up Table, Output	Sl.no.	Rise of water(I	R) in 'm'	Mass of water in 'Kg'	Volume of water collected	Volume of water by gravimeter method			
								-		
9	Sample Calculations	•	m Brea	adth of t	ollecting/measu he collecting/m g/ measuring ta	easuring tan	k B=	ater		
10	Graphs, Outputs									
11	Results & Analysis		The Given collecting tank is verified by Gravimetric method and the mass density of water is assumed as 1000 Kg/m3=							
12	Application Areas									
	Remarks									
	1									

14	Faculty	Signature	
	with Date		

Experiment 02 : CALIBRATION OF PRESSURE GAUGE (DEAD WEIGHT METHOD)

-	Experiment No.:	2	Marks		Date Planned		Date Conducted			
1	Title	PRF	SURE GAUC	 }F (DFAD \\/	EIGHT METH	<u> </u> (חס)	Conducted			
1						00/				
2	Course Outcomes	Appl	ying Bernou	llis theorem	for steady flo	ow through p	oipes			
3	Aim	To CA	LIBRATE PR	ESSURE GA	JGE (DEAD V	VEIGHT MET	HOD)			
	Matarial	Drago			aura indiaat			ht Dragging		
	Material Equipment Required				ressure, Digit		c dead weig ndicator	nt, Pressure		
		squar (mm differe conne press the a (the a	ressure is defined as force power unit area and is measured in Newton per quare meter (Pascal) or in terms of an equivalent head of some standard liquid nm of mercury or mater of water). A typical pressure gauge will measure the fference in pressure between two pressures. Thus a pressure gauge is ponnected to the hydraulic line and the gauge itself stands in atmospheric ressure. The gauge reading will be the difference between the air pressure and he atmospheric pressure and is called gauge pressure. The absolute pressure ne actual pressure within the air line) is the sum of the gauge pressure and mospheric pressure.							
6	Procedure	•	 Put the standard dead weight on the pan and close the needle valve. Then slowly operate the pump lever up and down and observe the pressure builds up and plunger is rises up. Observe the pressure gauge reading against the known weight While taking reading gently rotate the pan so that no friction will occur. 							
7	Diagram									
	Observation Table									
9	Sample		Dia of the	plunger	: 6 mm					
	Calculations	•	1 kg - 2kg - 5 kg - 10 kg - Total = Pan weigh	ght supplied 1 no 2 nos 1 no 1 no 20 kg nt = ½ kg uge : 0 to 28						
10	Graphs, Outputs									
	Results & Analysis									
12	Application Areas									
	Remarks									
	Faculty Signature with Date	4								

Experiment 03 :VERIFICATION OF BERNOULLI'S EQUATION

-	Experiment No.:	3	Marks		Date Planned		Date Conducted	
1	Title	BEF	RNOULLI'S E	QUATION				
18CV	′L48/ A&B					Copyright	©2017. cAAS. All r	rights reserved.

2	Course Outcomes	Applying	Bernoulli	s theorem	for stead	v flow thr	ough pipe	c]			
	Aim		on of BERN				Jugii pipe.	5				
4	Material / Equipment Required						collecting	ı tank set	-up.			
5	Theory, Formula, Principle, Concept	experime along a st The Bern velocity I incompre approxima are neglig	e objective is to validate Bernoulli's assumptions and theorem by perimentally proving that the sum of the terms in the Bernoulli equation ong a streamline always remains a constant e Bernoulli theorem is an approximate relation between pressure head, ocity head, and elevation (datum), and is valid in regions of steady, ompressible flow where net frictional forces are negligible. The key proximation in the derivation of Bernoulli's equation is that viscous effects e negligibly small compared to inertial, gravitational, and pressure effects. e can write the theorem as									
6	Procedure	 O ar ta Ke Cl Sl le Ar he N th Cl kr Re Ta ar 	 Observe the dimensions of the convergent-divergent duct of the apparatus, not it down. Measure the cross section area of collecting tank. Keep the delivery valve closed. Check electrical connection and switch on the pump Slowly open the inlet valve and allow water to fill up to a high head level. Adjust the flow rate to obtain steady flow and to maintain constant head. Note down the pressure head at different points of venture meter on the multi tube peizometer. 									
7	Diagram		Inflow Convertent zone Procedu	a Throat	Divergent p zone P	Outflow						
8	Observation Table	S.NO	Pizeom eter Reading	time for 5cm rise	Dischar ge Qm/se c	Pressur e Head m	Velocity Head m	Datum head m	Total Head			

9	Sample Calculations	Pressure head $= \frac{P}{\rho g}$ m
		Velocity head $=\frac{v^2}{2g}$ m
		Datum head $= Z = 0$ m (for this experiment)
		Velocity of water flow $= v$
		Q (Discharge) = [Volume of water collected in tank/time taken to collect water]
		= [Area of tank \times height of water collected in tank]/ t m ³ /sec
		Also
		Q= velocity of water in pipe \times area of cross section = $v \times A_{\pi} m^3/sec$
		Area of cross section $(A_x) = A_t + \left[\frac{(Ai - At) \times Ln}{L}\right]$ m ²
		$A_t = Area ext{ of Throt}$
		$A_i = Area ext{ of Inlet}$
		Dia of throt = 25mm
		Dia of inlet = 50mm
		L _n = distance between throt and corresponding pizeometer
		L=length of the diverging duct or converging duct = 300mm
		Distance between each piezometer = 75mm
10	Graphs, Outputs	• -
11	Results & Analysis	Bernoullis eqations varified
	Application Areas	
	Remarks	
14	Faculty Signature with Date	

Experiment 04 : CALIBERATION OF VENTURIMETER AND ORIFICEMETER

_	Experiment No.:	4	Marks		Date		Date				
					Planned		Conducted				
1	Title	Venti	urimeter	·							
2	Course Outcomes	Analy	/ze the flow t	hrough recta	Ingular and Ve	enturimeter	and Orifice n	neter			
3	Aim	Calib	libration of venturimeter								
	Equipment Required	betw Stopv	pe provided with inlet and outlet and pressure tapping and venturimeter in ween them, Differential u-tube manometer, Collecting tank with piezometer, owatch, Scale, A pipe provided with inlet and outlet and pressure tapping Orifice in between them								
5	Principle, Concept	relate of cre and e Ventu meas lengt The diver	ed the rate of oss-section. employed fo urimeter cor surement of surement of h of gradual semi-angle genceis3 to g	f flow could b The modern r measurement ntinues to b all types of convergence of converge 5 degrees. By	eer, discovere be created in p version of th ent of flow of be the best fluid flow in p e throat and a nce is 8 to a measuring th n be obtained	bipe by delil and venturim water by Cl and most bipes. The r longer leng to degrees and difference	berately redu eter was firs emens Herse precise ins neter consis th of gradual and the se e in fluid pres	icing its area t developed chel in 1886. trument for ts of a short divergence. mi-angle of ssure becore			

6	Procedure													
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	• • • • •	 The motor is switched on, as a result water will flow According to the flow, the ccl4 level fluctuates in the U-tube manometer The reading of H1 and H2 are noted The time taken for 5 cm rise of water in the collecting tank is noted The experiment is repeated for various flow in the same pipe The co-efficient of discharge is calculated The same procedure is followed for conducting orifice experiment 											
			2. Flow controlvative 4. Drain valve 5. Collecting tak 5. Collecting tak 6. Ordit competer 9. Rotin, com 10. Mancemeter 10. Mancemeter											
8	Observation Table,	S.NO	5.NO Manometric head Time taken for h cm raise of water in tank t											
			h1	h2	H									
	Sample	t = Ti	ime tal	ken for	h cm rai	se of water in tanl	c	1						
	Calculations					rst limb m								
		-				cond limb m								
						of flowing liquid	m							
		=	(h ₂ -h ₁)	$\times \{\frac{sp}{spe}\}$	cific gravit	ity of ccl 4 y of water -1}								
		Speci	ific gra	avity of	carbon t	tetra chloride (ccl4	4) = 1.6							
		-	-	-	water =	1								
				f the pip			cm							
					roat = 2.4		cm cm ²							
				-	tank = 5	_								
					rge (Qt)	$= \mathbf{K} \times \sqrt{h}$	m ³ /sec							
		K	$\frac{a1 \times a2}{\sqrt{a1^2}}$	-a2 ²										
		a ₁ =ar	ea of c	ross se	ction of	pipe								
		a_2 =area of cross section of pipe at throat												
		Actua	al Disc	harge ($(Q_a) = [V]$		ollected in tank/tin							
			æ ·				× height of water	collected in ta	nk]/ t					
		Coefi	ticient	of disc	harge C	$\mathbf{d} = \mathbf{Q}_{\mathbf{a}}/\mathbf{Q}_{\mathbf{t}}$								
10	Graphs, Outputs													
	Results & Analysis				Cooffic	opt of discharge the	rough Vonturing star							
					Coeffici	ent of discharge th	rough Venturimeter	=						

12	Application Areas	
13	Remarks	
14	Faculty Signature with Date	

Experiment 05: CALIBERATION OF ORIFICEMETER

-	Experiment No.:	5 Mar	ks	Date Planne	4	Date Conducted						
1	Title	ORIFICEMET	ER		~	oonducted						
2	Course Outcomes	Analyze the	flow through r	ectangular an	d Venturimeter	and Orifice me	ter					
3	Aim		f orificemeter									
4	Material / Equipment Required	between the Stopwatch, S	pipe provided with inlet and outlet and pressure tapping and venturi in etween them, Differential u-tube manometer, Collecting tank with piezometer, copwatch, Scale, A pipe provided with inlet and outlet and pressure tapping and Orifice in between them									
5	Theory, Formula Principle, Concept	When a fluic of the orifice velocity incre orifice the flo expands, th difference in	I passes throu , but as the flu eases and the ow reaches its e velocity fal fluid pressur	gh the orifice, id is forced to fluid pressur point of max lls and the e across tapp	e in it, which is its pressure bu converge to pa decreases. A imum converge pressure increa- pings upstream Bernoulli's equ	ilds up slightly ass through the little downstre nce, afterd tha ases. By meas and downstre	e hole, the eam of the at, the flow suring the					
6	Procedure,	 The Accommand The The The The The The 	 The reading of H1 and H2 are noted The reading of H1 and H2 are noted The time taken for 5 cm rise of water in the collecting tank is noted The experiment is repeated for various flow in the same pipe The co-efficient of discharge is calculated 									
7	Block, Circuit Model Diagram Reaction Equation Expected Graph	,			2. Flow c 4. Drain	pump ontrolvalve valve glass fineter "erer						
8	Observation Table,		nead Ra	ne taken for h cm iise of water in tank (R)	Time taken for h cm raise of water in tank (t)	Theoretical Discharge (Qt)	Actual Dischar ge (Qa)					

			h1	h2	н							
	-											
	-											
	-											
9	Sample	t = 7	Time t	aken fo	or h cm	raise of water in tan	k					
	Calculations	$h_l = 1$	Mano	metric	head in	n first limb m						
						n second limb m						
			= Venturi head in terms of flowing liquid m									
		=	$= (h_2 - h_1) \times \{ \frac{\text{Specific gravity of ccl 4}}{\text{specific gravity of water}} - 1 \}$									
			becific gravity of carbon tetra chloride $(ccl_4) = 1.6$									
		-	-	-	of wate							
		Diat	neter	of the j	pipe = 4	4	cm					
		Diat	neter	of the t	throat =	= 2.4	cm					
		Area	a of co	ollectin	g tank	= 50×50	cm ²					
		The	oretic	al Disc	harge ($Qt) = K \times \sqrt{h}$	m ³ /sec					
		K	$x = \frac{a1 \times a}{\sqrt{a}}$	$a2 \times \sqrt{2g}$ $1^2 - a2^2$								
		a1=a	irea of	f cross	section	of pipe						
						of pipe at throat						
		Actı	1al Di	scharg	e (Q _a) =	= [Volume of water of						
						-	× height of water	collected in tank]/	t			
		Coe	fficier	nt of di	scharge	$\mathbf{e} \mathbf{C}_{\mathbf{d}} = \mathbf{Q}_{\mathbf{a}} / \mathbf{Q}_{\mathbf{t}}$						
10	Graphs, Outputs											
	Results & Analysis				Coe	efficient of discharge th	nrough Orificemeter					
12	Application Areas				000	inclose of discharge ti						
	Remarks											
14	Faculty Signature with Date											

Experiment 06 : DETERMINATION OF PIPE FLOW LOSSES IN CIRCULAR PIPES

-	Experiment No.:	6	Marks		Date Planned	Date Conducted					
1	Title	PIPE	FLOW LOSS	SES IN CIRCU	LAR PIPES						
2	Course Outcomes	Analy	lyze the flow through Rectangular and V-notch								
3	Aim	Deter	ermination of lo								
· ·	Material / Equipment Required	betw Stop\	pipe provided with inlet and outlet and pressure tapping and venturi in tween them, Differential u-tube manometer, Collecting tank with piezometer, opwatch, Scale, A pipe provided with inlet and outlet and pressure tapping d Orifice in between them								
5		rmula, When the fluid flows through a pipe the viscosity of the fluid and the in surface of the pipe offer resistance to the flow. In overcoming the resista some energy of the flowing fluid is lost. This is called the major loss in pipe f Boundary roughness, which has little significance in laminar flow, plays important role in turbulence. This, together with transverse moment exchange of fluid particles due to the perpetual turbulent intermixing, are									

		have equa	bee tions	en p 5 rela	oropo ate	osed to detern	ear stresses in tunine the head ses to physical o	losses due	to frictio	n. These
6	Procedure,	•	T A M T T T	ne m ccor lanoi ne re ne tii ne ex	noto ding met eadii me f xpei	r is switched on, g to the flow, the er ng of H1 and H2 taken for 5cm ris	se of water in the ed for various flo	er will flow luctuates in th e collecting ta	ank is not	
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								4. Drain	y pump controlvalve valve ting tank
8	Observation Table,	S.N O		nom hea		Time taken for h cm raise of water in tank t	Time taken for h cm raise of water in tank t	Theoretical Discharge (Qt)	Velocit y (v) m/sec	Friction factor (f)
			h1	h2	Н					

	Comple Coloulation		
9	Sample Calculation	Friction factor (f) = $\frac{2 \times g \times D \times hf}{41 \times w^2}$ Where,	
		Friction factor $(1) = \frac{1}{4l \times v^2}$ where,	_
		g = Acceleration due to gravity	(m / sec ²)
		cross sectional area πr^2	
		D for circular pipe = $4x \frac{cross \ sectional \ area}{wetted \ perimeter} = 4x \frac{\pi r^2}{\pi d} = d$	
		d= Diameter of the pipe = 2cm	
		D for squarer pipe = $4x \frac{cross \ sectional \ area}{wetted \ perimeter} = 4x \left[\frac{wxh}{2x(w+h)}\right]$	
		D for squarer pipe $-4X$ wetted perimeter $-4X$ $\begin{bmatrix} -4X \\ 2x(w+h) \end{bmatrix}$	
		w= 2cm ,width of pipe, h= 2cm , height of pipe(fc	r a square)
		1 = Length of the pipe $= 200$ cm	
		v = Velocity of liquid following in the pipe (m /	s)
		$h_f = Loss$ of head due to friction	(m)
		$= (h_2-h_1) \times \{ \frac{\text{Specific gravity of Hg}}{\text{specific gravity of water}} - 1 \}$ Where	
		= (12-11) ~ { specific gravity of water - 13 WHEre	
		$h_1 = Manometric head in the first limbs$	
		-	
		$h_2 =$ Manometric head in the second limbs	
		Actual Discharge $Q = \frac{A \times h}{t}$	(m ³ / sec)
		Where	
		A = Area of the collecting tank	(m ²)
		h = Rise of water for 5 cm	(m)
		t = Time taken for 5 cm rise	(sec)
		Also	
		Q=Velocity in the pipe X Area of the pipe	
		V = Q/a	
		v = Q/a	
10	Graphs, Outputs		
11	Results & Analysis		
	Application Areas		
	Remarks		
14	Faculty Signature with Date		
	with Date		

Experiment 07:FLOW THROUGH NOTCHES

-	Experiment No.:	7	Marks		Date Planned	Date Conducted				
1	Title	FLOV	V THROUGH	NOTCHES						
2	Course Outcomes									
3	Aim		determine the coefficients of discharge of the rectangular, triangular and pezoidal notches							
4			aulic bench hes – Rectan	gular, triangı	ılar, trapezoid	al shape.				

	Required	Hook and point gauge Calibrated collecting tank Stop watch	
5		In open channel hydraulics, weirs are c measure the volumetric flow rate. The situations such as irrigation schemes applications, weirs are oftenreferred to edged and manufactured from thinpla baffles which calms the flow. Then, the over a sharp-edged notch set at the oth the channel in the form of a nappe is the tank. The volumetric flow rate is measure a known volume of water in the tank A) RECTANGULAR NOTCE Coefficient of discharge $Q_{th} = \frac{2}{3}\sqrt{2g} B H^{3/2}$ $Q_{act} = \frac{Volume Collected}{Time Taken}$ $C_d = \frac{Q_{act}}{Q_{th}}$ C) TRAPEZOIDAL NO Coefficient of discharg $Q_{th} = \frac{8}{15}\sqrt{2g} H^{5/2}$ tan $Q_{act} = \frac{Volume Collected}{Time Taken}$ $C_d = \frac{Q_{act}}{Q_{th}}$	ey are of particular use in large scale s, canals and rivers. For small scale b as notches and invariably are sharp ate material. Water enters the stilling efflowpasses into the channel and flows her end of thechannel. Water comes of en directed into thecalibrated collection ed by recording the time taken to collect B) TRIANGULAR NOTCH Coefficient of discharge $Q_{th} = \frac{8}{15}\sqrt{2g} H^{5/2} \tan \frac{\theta}{2}$ $Q_{act} = \frac{\text{Volume Collected}}{\text{Time Taken}}$ OTCH re $\frac{\theta}{2} + \frac{2}{3}\sqrt{2g} B H^{3/2}$
6	Procedure,	 Preparation for experiment: 1.Insert the given notch into the hydrauli order to prevent leakage. 2.Open the water supply and allow wa water supply, let excess water drain throuthe water level 'ho'using the hook ar collecting tank and shut the valve of collecting tank. Experiment steps: 3.After initial preparation, open regulating water level over notch. Wait until flow is seen to find the water head 'H' above the crest 5.Note the piezometric reading 'z in the crest 5.Note the piezometric reading 'z in the crest for the time taken 'T' and the piezomatic. 6.Record the time taken 'T' and the piezomatic allowing sufficient water quantity step 3 to step 6 by using different flow adjusting the water supply. Measure and piezometric reading in the collecting tank is full, just empty it before 8.To determine the coefficient of dischargemetric reading in the context of the context of the stop water is the full of the taken is full. 	ter till over flows over the notch. Stop ugh notch and note the initial reading of nd point gauge. Let water drain from ecting tank after emptying the g valve to increase the flow andmaintain steady. and measure the current water level 'H t of the notch. collecting tank while switch on the ometric reading 'z in the collecting tank of water in the collecting tank Repeat v rate of water, which can be done by record the H, the time and ik until 5 sets of data have been taken. If e the step no 3.

		Dete	ərmiı	nation of	Cd of recta	ngular notch			I	
		SL. N O	L. Theoretical Discharge Measurement		Actual Discharge Measurement					
			h1	Н	Theoretic al Discharge	Water Rise in Collecting Tank R (m)	Time Taken 'T' (sec)	Volume of water collected	Discha rge, Qact	
9	Sample Calculation		I							
10	Graphs, Outputs									
	Results & Analysis	•	, R	ectangular	notch : Averag	je Value of Cd =				
		•	 triangular notch : Average Value of Cd = 							
12	Application Areas		trapezoidal notch : Average Value of Cd =							
	Remarks									
	Faculty Signature with Date									

Experiment 08: IMPACT OF JET ON PLATES

-	Experiment No.:	8	Marks		Date		Date			
					Planned		Conducted			
1	Title	IMPA	1PACT OF JET ON PLATES							
2	Course Outcomes									
3	Aim	Detei	rmine the var	ne coefficier	it for a flat var	ne &semicirc	ular vane			
	Equipment Required	Colle Stop Weig	hydraulic work bench setup containing nozzle for striking jet on plate. collecting tank top watch Veights							
5		when a jet of water is directed to hit a vane of any particular shape, the force is exerted on it by the fluid in the opposite direction. The amount of force exerted depends on the diameter of the jet, shape of the vane and flow rate of water. The force also depends on whether the vane is moving or stationary. The current experiment deals with the force exerted on stationary vanes. The following are the theoretical formulae for calculating the force for different shapes of vanes based on the flow rate.								
			1	. Hemi – spherical l	Plate: $F_t = 2\rho A V \Box/g$					
			2	. Flat Plate:	$F_t = \rho A$	V□/g				
			3	. Inclined Plate:	$F_t = (\rho A)$	$V\Box/g$) Sin θ				
		Where,								
				ʻg' = 9.81 i	m/s					
				'A' = Area	of jet in m□					
			$\rho^* = Density \text{ of water} = 1000 \text{ Kg/m}$							
			V' = Velocity of jet in m/s $\theta' = Angle the deflected jet makes with the axis of the$							

6		b. Kee c. Con d. Fix t e. Pres appea f. Swito g. Adju h. Not indicat	 Fill in the sump tank with clean water. Keep the delivery valve closed. Connect the power cable to 1Ph, 220V,10Amps with earth connection. Fix the vane & jet in position with care applying minimum force. Press tare button on the force indicator to balance (if zero does not ppear). Switch on the pump & open the delivery valve. Adjust the flow using control valve of the Rotameter. Note down the force exerted by the jet on the vane indicated by force indicator. Change the flow rate and repeat the above steps 							
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph									
8	Observation Table,	SL.N O	Dia of Jet	type of vane	Rotame Reading LPM 'Q 2	g	Pressur gauge in Kg/Cm	P' Indicator 'Fa' Kgf		
			Jet Dia in mm	Type of vane	Qlpm	Actua Force in Kg	e Fa	Theoretical Force F th in Kgf	Coefficient of impact Ci= Fa/Fth	
9	Sample Calculation									
11	Graphs, Outputs Results & Analysis	 Actual Force, Fa in Kgf= Theoretical Force, Fth in Kgf= Co –efficient of Impact = Fa/Fth= 								
	Application Areas									
-	Remarks Faculty Signature									
14	with Date									

Experiment 09: Pelton Wheel turbine

-	Experiment No.:	9	Marks			Date Planned		Date Conducted	d			
1	Title	Pelto	n wheel ti	urbine				1				
	Course Outcomes											
3	Aim	To stı	udy perfor	mance c	haracte	eristics of a F	Pelton Whee	əl				
	Equipment	Colle Stop	A hydraulic work bench setup containing nozzle for striking jet on plate. Collecting tank Stop watch Weights									
	Theory, Formula, Principle, Concept	Turbin head the T rotate most Franc Whee	Turbines are classified as Impulse and Reaction Types. In Impulse Turbine, the head of the water is completely converted into a jet, which impulse the force on the Turbine. In Reaction Turbine, it is the pressure of the flowing water, which rotates the runner of the Turbine. Of many types of Turbine, the Pelton Wheel, most commonly used, falls into this category of Impulse Turbine while the Francis & Kaplan fall into the category of Reaction Turbines. Normally, Pelton Wheel requires high Heads and Low Discharge while the Francis & Kaplan (Reaction Turbines) requires relatively low Heads and high Discharge.									
6		 PROCEDURE: A. TO OBTAIN CONSTANT HEAD CHARACTERISTICS. 1.Keep the Delivery valve open at Maximum. 2.Set the head at required value. 3.Now apply the load. 4.Operating the Sphere Rod Assembly, maintain the head to the Set value.Repeat the steps 4 and 5 till the maximum load the turbine can take. 5.In the meantime, Note down the turbine speed, vacuum head and Venturimeter readings for each loadings B. TO OBTAIN CONSTANT SPEED CHARACTERISTICS. 1.Keep the Delivery valve open at Maximum. 2.Now apply the load. 3.Operating the Sphere Rod Assembly, maintain the speed tothe Set value.Repeat the steps 4 and 5 till the maximum load the turbine can take. 										
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Venturimeter readings for each loadings.										
8	Observation Table,	SL. Turbine Deliver Venturimeter Load, Kg NO speed y N rpm Pressur e' P' Kg/cm 2										
					P1	P2	F1	F2	F=F1~F			
L	1	L			1	1	1	1				

			Kg/c m²	Kg/c m²			2
9 Sample Calculation	CALCULATI	<u>ONS</u> :			Where,		
	6. <u>Total H</u>	ead of Turbine in mete	ers of water, l	H		P = Pressure gauge	readings in Kg/Cm ²
		$H = \left(P + \frac{P_v}{760}\right) *$	* 1 0 r	n of water		Pv = vacuum Pressure	gauge readings in mm of hg
		Q	$=\frac{Cd*A1}{(\sqrt{A})}$	$\frac{4 \times A2 \times \sqrt{2gh}}{1^2 - A2^2}$	- m ³ /s		
	Whe						
		h = (P1 - P2) $A1 = Area of t$		rimeter			
		$A_1 = \frac{\pi x D_1^2}{4}$					
		Where, $D1 = V$	/enturime	ter Inlet dia	meter = 50mm	l .	
		A2 =	Area o	of the thr	oat of the	Venturimet	er
		$A_2 =$	$=\frac{\pi x D_2}{4}$	$\frac{2^2}{m^2}$ m ²			
		When	e, D2 =	= Ventu	rimeter Th	roat diamet	er = 26mm
		Cd =	• 0.95 (Constan	t)		
		8. <u>Input t</u>	o the t	urbine, j	IP(Hydra	ulic)	
				IP =	$=\frac{WQH}{1000} k$	w	
		Where,	W	V = 9810) Kg/m³		
	Sl. No	Total Head H, m		scharge m³/sec	IP, KW	OP, KW	Turbine efficiency %
.0 Graphs, Outputs						s of the Kapla	

		3)The unit head and other quantities are calculated from the knowledge of constant head characteristics. 4)The numerical values in graphs and design calculations should be looked upon as qualitative figures rather than quantitative ones as some of the components available in the market for constructing the turbine are limited.
12	Application	
	Areas	
13	Remarks	
14	Faculty	
	Signature with	
	Date	